Information-Theoretic Characterization of Vowel Harmony: A Cross-Linguistic Study on Word Lists
We present a cross-linguistic study that aims to quantify vowel harmony using data-driven computational modeling. Concretely, we define an information-theoretic measure of harmonicity based on the predictability of vowels in a natural language lexicon, which we estimate using phoneme-level language models (PLMs). Prior quantitative studies have relied heavily on inflected word-forms in the analysis of vowel harmony. We instead train our models using cross-linguistically comparable lemma forms with little or no inflection, which enables us to cover more under-studied languages. Training data for our PLMs consists of word lists with a maximum of 1000 entries per language. Despite the fact that the data we employ are substantially smaller than previously used corpora, our experiments demonstrate the neural PLMs capture vowel harmony patterns in a set of languages that exhibit this phenomenon. Our work also demonstrates that word lists are a valuable resource for typological research, and offers new possibilities for future studies on low-resource, under-studied languages.
READ FULL TEXT