Institutionally Distributed Deep Learning Networks

09/10/2017
by   Ken Chang, et al.
0

Deep learning has become a promising approach for automated medical diagnoses. When medical data samples are limited, collaboration among multiple institutions is necessary to achieve high algorithm performance. However, sharing patient data often has limitations due to technical, legal, or ethical concerns. In such cases, sharing a deep learning model is a more attractive alternative. The best method of performing such a task is unclear, however. In this study, we simulate the dissemination of learning deep learning network models across four institutions using various heuristics and compare the results with a deep learning model trained on centrally hosted patient data. The heuristics investigated include ensembling single institution models, single weight transfer, and cyclical weight transfer. We evaluated these approaches for image classification in three independent image collections (retinal fundus photos, mammography, and ImageNet). We find that cyclical weight transfer resulted in a performance (testing accuracy = 77.3 closest to that of centrally hosted patient data (testing accuracy = 78.7 also found that there is an improvement in the performance of cyclical weight transfer heuristic with high frequency of weight transfer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset