Integer Division by Constants: Optimal Bounds

12/22/2020
by   Daniel Lemire, et al.
0

The integer division of a numerator n by a divisor d gives a quotient q and a remainder r. Optimizing compilers accelerate software by replacing the division of n by d with the division of c * n (or c * n + c) by m for convenient integers c and m chosen so that they approximate the reciprocal: c/m  = 1/d. Such techniques are especially advantageous when m is chosen to be a power of two and when d is a constant so that c and m can be precomputed. The literature contains many bounds on the distance between c/m and the divisor d. Some of these bounds are optimally tight, while others are not. Using accessible mathematics, we present optimally tight bounds for quotient and remainder computations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset