Integrating Low-Power Wide-Area Networks for Enhanced Scalability and Extended Coverage

01/01/2020
by   Mahbubur Rahman, et al.
0

Low-Power Wide-Area Networks (LPWANs) are evolving as an enabling technology for Internet-of-Things (IoT) due to their capability of communicating over long distances at very low transmission power. Existing LPWAN technologies, however, face limitations in meeting scalability and covering very wide areas which make their adoption challenging for future IoT applications, especially in infrastructure-limited rural areas. To address this limitation, in this paper, we consider achieving scal-ability and extended coverage by integrating multiple LPWANs. SNOW (Sensor Network Over White Spaces), a recently proposed LPWAN architecture over the TV white spaces, has demonstrated its advantages over existing LPWANs in performance and energy-efficiency. In this paper, we propose to scale up LPWANs through a seamless integration of multiple SNOWs which enables concurrent inter-SNOW and intra-SNOW communications. We then formulate the tradeoff between scalability and inter-SNOW interference as a constrained optimization problem whose objective is to maximize scalability by managing white space spectrum sharing across multiple SNOWs. We also prove the NP-hardness of this problem. To this extent, We propose an intuitive polynomial-time heuristic algorithm for solving the scalability optimization problem which is highly efficient in practice. For the sake of theoretical bound, we also propose a simple polynomial-time 1/2-approximation algorithm for the scalability optimization problem. Hardware experiments through deployment in an area of (25x15)sq. km as well as large scale simulations demonstrate the effectiveness of our algorithms and feasibility of achieving scalability through seamless integration of SNOWs with high reliability, low latency, and energy efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset