Integrating Topic Models and Latent Factors for Recommendation

10/28/2016
by   Danis J. Wilson, et al.
0

The research of personalized recommendation techniques today has mostly parted into two mainstream directions, i.e., the factorization-based approaches and topic models. Practically, they aim to benefit from the numerical ratings and textual reviews, correspondingly, which compose two major information sources in various real-world systems. However, although the two approaches are supposed to be correlated for their same goal of accurate recommendation, there still lacks a clear theoretical understanding of how their objective functions can be mathematically bridged to leverage the numerical ratings and textual reviews collectively, and why such a bridge is intuitively reasonable to match up their learning procedures for the rating prediction and top-N recommendation tasks, respectively. In this work, we exposit with mathematical analysis that, the vector-level randomization functions to coordinate the optimization objectives of factorizational and topic models unfortunately do not exist at all, although they are usually pre-assumed and intuitively designed in the literature. Fortunately, we also point out that one can avoid the seeking of such a randomization function by optimizing a Joint Factorizational Topic (JFT) model directly. We apply our JFT model to restaurant recommendation, and study its performance in both normal and cross-city recommendation scenarios, where the latter is an extremely difficult task for its inherent cold-start nature. Experimental results on real-world datasets verified the appealing performance of our approach against previous methods, on both rating prediction and top-N recommendation tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset