Integrative analysis of time course metabolic data and biomarker discovery

01/23/2018
by   Takoua Jendoubi, et al.
0

Metabonomics time-course experiments provide the opportunity to understand the changes to an organism by observing the evolution of metabolic profiles in response to internal or external stimuli. Along with other omic longitudinal profiling technologies, these techniques have great potential to complement the analysis of complex relations between variations across diverse omic variables and provide unique insights into the underlying biology of the system. However, many statistical methods currently used to analyse short time-series omic data are i) prone to overfitting or ii) do not take into account the experimental design or iii) do not make full use of the multivariate information intrinsic to the data or iv) unable to uncover multiple associations between different omic data. The model we propose is an attempt to i) overcome overfitting by using a weakly informative Bayesian model, ii) capture experimental design conditions through a mixed-effects model, iii) model interdependencies between variables by augmenting the mixed-effects model with a conditional auto-regressive (CAR) component and iv) identify potential associations between heterogeneous omic variables .

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset