Intensional and Extensional Semantics of Bounded and Unbounded Nondeterminism

10/27/2017
by   James Laird, et al.
0

We give extensional and intensional characterizations of nondeterministic functional programs: as structure preserving functions between biorders, and as nondeterministic sequential algorithms on ordered concrete data structures which compute them. A fundamental result establishes that the extensional and intensional representations of non-deterministic programs are equivalent, by showing how to construct a unique sequential algorithm which computes a given monotone and stable function, and describing the conditions on sequential algorithms which correspond to continuity with respect to each order. We illustrate by defining may and must-testing denotational semantics for a sequential functional language with bounded and unbounded choice operators. We prove that these are computationally adequate, despite the non-continuity of the must-testing semantics of unbounded nondeterminism. In the bounded case, we prove that our continuous models are fully abstract with respect to may-and-must testing by identifying a simple universal type, which may also form the basis for models of the untyped lambda-calculus. In the unbounded case we observe that our model contains computable functions which are not denoted by terms, by identifying a further "weak continuity" property of the definable elements, and use this to establish that it is not fully abstract.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset