INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations

09/02/2022
by   Jialin Yu, et al.
8

XAI with natural language processing aims to produce human-readable explanations as evidence for AI decision-making, which addresses explainability and transparency. However, from an HCI perspective, the current approaches only focus on delivering a single explanation, which fails to account for the diversity of human thoughts and experiences in language. This paper thus addresses this gap, by proposing a generative XAI framework, INTERACTION (explaIn aNd predicT thEn queRy with contextuAl CondiTional varIational autO-eNcoder). Our novel framework presents explanation in two steps: (step one) Explanation and Label Prediction; and (step two) Diverse Evidence Generation. We conduct intensive experiments with the Transformer architecture on a benchmark dataset, e-SNLI. Our method achieves competitive or better performance against state-of-the-art baseline models on explanation generation (up to 4.7 one; it can also generate multiple diverse explanations in step two.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset