Internal sums for synthetic fibered (∞,1)-categories

05/01/2022
by   Jonathan Weinberger, et al.
0

We give structural results about bifibrations of (internal) (∞,1)-categories with internal sums. This includes a higher version of Moens' Theorem, characterizing cartesian bifibrations with extensive aka stable and disjoint internal sums over lex bases as Artin gluings of lex functors. We also treat a generalized version of Moens' Theorem due to Streicher which does not require the Beck–Chevalley condition. Furthermore, we show that also in this setting the Moens fibrations can be characterized via a condition due to Zawadowski. Our account overall follows Streicher's presentation of fibered category theory à la Bénabou, generalizing the results to the internal, higher-categorical case, formulated in a synthetic setting. Namely, we work inside simplicial homotopy type theory, which has been introduced by Riehl and Shulman as a logical system to reason about internal (∞,1)-categories, interpreted as Rezk objects in any given Grothendieck–Rezk–Lurie (∞,1)-topos.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset