Internet of Things Enabled Policing Processes
The Internet of Things (IoT) has the potential to transform many industries. This includes harnessing real-time intelligence to improve risk-based decision making and supporting adaptive processes from core to edge. For example, modern police investigation processes are often extremely complex, data-driven and knowledge-intensive. In such processes, it is not sufficient to focus on data storage and data analysis; as the knowledge workers (e.g., police investigators) will need to collect, understand and relate the big data (scattered across various systems) to process analysis. In this thesis, we analyze the state of the art in knowledge-intensive and data-driven processes. We present a scalable and extensible IoT-enabled process data analytics pipeline to enable analysts ingest data from IoT devices, extract knowledge from this data and link them to process execution data. We focus on a motivating scenario in policing, where a criminal investigator will be augmented by smart devices to collect data and to identify devices around the investigation location, to communicate with them to understand and analyze evidence. We design and implement a system (namely iCOP, IoT-enabled COP) to assist investigators collect large amounts of evidence and dig for the facts in an easy way.
READ FULL TEXT