Interpreting Graph Drawing with Multi-Agent Reinforcement Learning

11/02/2020
by   Ilkin Safarli, et al.
0

Applying machine learning techniques to graph drawing has become an emergent area of research in visualization. In this paper, we interpret graph drawing as a multi-agent reinforcement learning (MARL) problem. We first demonstrate that a large number of classic graph drawing algorithms, including force-directed layouts and stress majorization, can be interpreted within the framework of MARL. Using this interpretation, a node in the graph is assigned to an agent with a reward function. Via multi-agent reward maximization, we obtain an aesthetically pleasing graph layout that is comparable to the outputs of classic algorithms. The main strength of a MARL framework for graph drawing is that it not only unifies a number of classic drawing algorithms in a general formulation but also supports the creation of novel graph drawing algorithms by introducing a diverse set of reward functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset