Intra-class variation reduction of speaker representation in disentanglement framework

08/04/2020
by   Yoohwan Kwon, et al.
0

In this paper, we propose an effective training strategy to ex-tract robust speaker representations from a speech signal. Oneof the key challenges in speaker recognition tasks is to learnlatent representations or embeddings containing solely speakercharacteristic information in order to be robust in terms of intra-speaker variations. By modifying the network architecture togenerate both speaker-related and speaker-unrelated representa-tions, we exploit a learning criterion which minimizes the mu-tual information between these disentangled embeddings. Wealso introduce an identity change loss criterion which utilizes areconstruction error to different utterances spoken by the samespeaker. Since the proposed criteria reduce the variation ofspeaker characteristics caused by changes in background envi-ronment or spoken content, the resulting embeddings of eachspeaker become more consistent. The effectiveness of the pro-posed method is demonstrated through two tasks; disentangle-ment performance, and improvement of speaker recognition ac-curacy compared to the baseline model on a benchmark dataset,VoxCeleb1. Ablation studies also show the impact of each cri-terion on overall performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset