Is multiagent deep reinforcement learning the answer or the question? A brief survey

10/12/2018
by   Pablo Hernandez-Leal, et al.
0

Deep reinforcement learning (DRL) has achieved outstanding results in recent years. This has led to a dramatic increase in the number of applications and methods. Recent works have explored learning beyond single-agent scenarios and have considered multiagent scenarios. Initial results report successes in complex multiagent domains, although there are several challenges to be addressed. In this context, first, this article provides a clear overview of current multiagent deep reinforcement learning (MDRL) literature. Second, it provides guidelines to complement this emerging area by (i) showcasing examples on how methods and algorithms from DRL and multiagent learning (MAL) have helped solve problems in MDRL and (ii) providing general lessons learned from these works. We expect this article will help unify and motivate future research to take advantage of the abundant literature that exists in both areas (DRL and MAL) in a joint effort to promote fruitful research in the multiagent community.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset