Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis

03/16/2020
by   Koulik Khamaru, et al.
21

We address the problem of policy evaluation in discounted Markov decision processes, and provide instance-dependent guarantees on the ℓ_∞-error under a generative model. We establish both asymptotic and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms. Theory-inspired simulations show that the widely-used temporal difference (TD) algorithm is strictly suboptimal when evaluated in a non-asymptotic setting, even when combined with Polyak-Ruppert iterate averaging. We remedy this issue by introducing and analyzing variance-reduced forms of stochastic approximation, showing that they achieve non-asymptotic, instance-dependent optimality up to logarithmic factors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset