Isogeometric Analysis of Bound States of a Quantum Three-Body Problem in 1D

02/21/2022
by   Quanling Deng, et al.
0

In this paper, we initiate the study of isogeometric analysis (IGA) of a quantum three-body problem that has been well-known to be difficult to solve. In the IGA setting, we represent the wavefunctions by linear combinations of B-spline basis functions and solve the problem as a matrix eigenvalue problem. The eigenvalue gives the eigenstate energy while the eigenvector gives the coefficients of the B-splines that lead to the eigenstate. The major difficulty of isogeometric or other finite-element-method-based analyses lies in the lack of boundary conditions and a large number of degrees of freedom for accuracy. For a typical many-body problem with attractive interaction, there are bound and scattering states where bound states have negative eigenvalues. We focus on bound states and start with the analysis for a two-body problem. We demonstrate through various numerical experiments that IGA provides a promising technique to solve the three-body problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset