Iterative Subsampling in Solution Path Clustering of Noisy Big Data
We develop an iterative subsampling approach to improve the computational efficiency of our previous work on solution path clustering (SPC). The SPC method achieves clustering by concave regularization on the pairwise distances between cluster centers. This clustering method has the important capability to recognize noise and to provide a short path of clustering solutions; however, it is not sufficiently fast for big datasets. Thus, we propose a method that iterates between clustering a small subsample of the full data and sequentially assigning the other data points to attain orders of magnitude of computational savings. The new method preserves the ability to isolate noise, includes a solution selection mechanism that ultimately provides one clustering solution with an estimated number of clusters, and is shown to be able to extract small tight clusters from noisy data. The method's relatively minor losses in accuracy are demonstrated through simulation studies, and its ability to handle large datasets is illustrated through applications to gene expression datasets. An R package, SPClustering, for the SPC method with iterative subsampling is available at http://www.stat.ucla.edu/ zhou/Software.html.
READ FULL TEXT