iThing: Designing Next-Generation Things with Battery Health Self-Monitoring Capabilities for Sustainable IoT in Smart Cities
An accurate and reliable technique for predicting Remaining Useful Life (RUL) for battery cells proves helpful in battery-operated IoT devices, especially in remotely operated sensor nodes. Data-driven methods have proved to be the most effective methods until now. These IoT devices have low computational capabilities to save costs, but Data-Driven battery health techniques often require a comparatively large amount of computational power to predict SOH and RUL due to most methods being feature-heavy. This issue calls for ways to predict RUL with the least amount of calculations and memory. This paper proposes an effective and novel peak extraction method to reduce computation and memory needs and provide accurate prediction methods using the least number of features while performing all calculations on-board. The model can self-sustain, requires minimal external interference, and hence operate remotely much longer. Experimental results prove the accuracy and reliability of this method. The Absolute Error (AE), Relative error (RE), and Root Mean Square Error (RMSE) are calculated to compare effectiveness. The training of the GPR model takes less than 2 seconds, and the correlation between SOH from peak extraction and RUL is 0.97.
READ FULL TEXT