iWash: A Smartwatch Handwashing Quality Assessment and Reminder System with Real-time Feedback in the Context of Infectious Disease

09/22/2020
by   Sirat Samyoun, et al.
0

Washing hands properly and frequently is the simplest and most cost-effective interventions to prevent the spread of infectious diseases. People are often ignorant about proper handwashing in different situations and do not know if they wash hands properly. Smartwatches are found to be effective for assessing the quality of handwashing. However, the existing smartwatch based systems are not comprehensive enough in terms of achieving accuracy as well as reminding people to handwash and providing feedback to the user about the quality of handwashing. On-device processing is often required to provide real-time feedback to the user, and so it is important to develop a system that runs efficiently on low-resource devices like smartwatches. However, none of the existing systems for handwashing quality assessment are optimized for on-device processing. We present iWash, a comprehensive system for quality assessment and context-aware reminder for handwashing with real-time feedback using smartwatches. iWash is a hybrid deep neural network based system that is optimized for on-device processing to ensure high accuracy with minimal processing time and battery usage. Additionally, it is a context-aware system that detects when the user is entering home using a Bluetooth beacon and provides reminders to wash hands. iWash also offers touch-free interaction between the user and the smartwatch that minimizes the risk of germ transmission. We collected a real-life dataset and conducted extensive evaluations to demonstrate the performance of iWash. Compared to the existing handwashing quality assessment systems, we achieve around 12 for quality assessment, as well as we reduce the processing time and battery usage by around 37

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset