Jacobian Computation for Cumulative B-splines on SE(3) and Application to Continuous-Time Object Tracking
In this paper we propose a method that estimates the SE(3) continuous trajectories (orientation and translation) of the dynamic rigid objects present in a scene, from multiple RGB-D views. Specifically, we fit the object trajectories to cumulative B-Splines curves, which allow us to interpolate, at any intermediate time stamp, not only their poses but also their linear and angular velocities and accelerations. Additionally, we derive in this work the analytical SE(3) Jacobians needed by the optimization, being applicable to any other approach that uses this type of curves. To the best of our knowledge this is the first work that proposes 6-DoF continuous-time object tracking, which we endorse with significant computational cost reduction thanks to our analytical derivations. We evaluate our proposal in synthetic data and in a public benchmark, showing competitive results in localization and significant improvements in velocity estimation in comparison to discrete-time approaches.
READ FULL TEXT