JDRec: Practical Actor-Critic Framework for Online Combinatorial Recommender System

07/27/2022
by   Xin Zhao, et al.
0

A combinatorial recommender (CR) system feeds a list of items to a user at a time in the result page, in which the user behavior is affected by both contextual information and items. The CR is formulated as a combinatorial optimization problem with the objective of maximizing the recommendation reward of the whole list. Despite its importance, it is still a challenge to build a practical CR system, due to the efficiency, dynamics, personalization requirement in online environment. In particular, we tear the problem into two sub-problems, list generation and list evaluation. Novel and practical model architectures are designed for these sub-problems aiming at jointly optimizing effectiveness and efficiency. In order to adapt to online case, a bootstrap algorithm forming an actor-critic reinforcement framework is given to explore better recommendation mode in long-term user interaction. Offline and online experiment results demonstrate the efficacy of proposed JDRec framework. JDRec has been applied in online JD recommendation, improving click through rate by 2.6 large-scale dataset used in this study to contribute to the research community.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro