Joint Tracking of Multiple Quantiles Through Conditional Quantiles
Estimation of quantiles is one of the most fundamental real-time analysis tasks. Most real-time data streams vary dynamically with time and incremental quantile estimators document state-of-the art performance to track quantiles of such data streams. However, most are not able to make joint estimates of multiple quantiles in a consistent manner, and estimates may violate the monotone property of quantiles. In this paper we propose the general concept of *conditional quantiles* that can extend incremental estimators to jointly track multiple quantiles. We apply the concept to propose two new estimators. Extensive experimental results, on both synthetic and real-life data, show that the new estimators clearly outperform legacy state-of-the-art joint quantile tracking algorithm and achieve faster adaptivity in dynamically varying data streams.
READ FULL TEXT