Kernel Machines With Missing Responses

06/07/2018
by   Tiantian Liu, et al.
0

Missing responses is a missing data format in which outcomes are not always observed. In this work we develop kernel machines that can handle missing responses. First, we propose a kernel machine family that uses mainly the complete cases. For the quadratic loss, we then propose a family of doubly-robust kernel machines. The proposed kernel-machine estimators can be applied to both regression and classification problems. We prove oracle inequalities for the finite-sample differences between the kernel machine risk and Bayes risk. We use these oracle inequalities to prove consistency and to calculate convergence rates. We demonstrate the performance of the two proposed kernel machine families using both a simulation study and a real-world data analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset