Kernelization, Proof Complexity and Social Choice

04/28/2021
by   Gabriel Istrate, et al.
0

We display an application of the notions of kernelization and data reduction from parameterized complexity to proof complexity: Specifically, we show that the existence of data reduction rules for a parameterized problem having (a). a small-length reduction chain, and (b). small-size (extended) Frege proofs certifying the soundness of reduction steps implies the existence of subexponential size (extended) Frege proofs for propositional formalizations of the given problem. We apply our result to infer the existence of subexponential Frege and extended Frege proofs for a variety of problems. Improving earlier results of Aisenberg et al. (ICALP 2015), we show that propositional formulas expressing (a stronger form of) the Kneser-Lovász Theorem have polynomial size Frege proofs for each constant value of the parameter k. Previously only quasipolynomial bounds were known (and only for the ordinary Kneser-Lovász Theorem). Another notable application of our framework is to impossibility results in computational social choice: we show that, for any fixed number of agents, propositional translations of the Arrow and Gibbard-Satterthwaite impossibility theorems have subexponential size Frege proofs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset