Keyframe-Based Visual-Inertial Online SLAM with Relocalization

02/07/2017
by   Anton Kasyanov, et al.
0

Complementing images with inertial measurements has become one of the most popular approaches to achieve highly accurate and robust real-time camera pose tracking. In this paper, we present a keyframe-based approach to visual-inertial simultaneous localization and mapping (SLAM) for monocular and stereo cameras. Our visual-inertial SLAM system is based on a real-time capable visual-inertial odometry method that provides locally consistent trajectory and map estimates. We achieve global consistency in the estimate through online loop-closing and non-linear optimization. Furthermore, our system supports relocalization in a map that has been previously obtained and allows for continued SLAM operation. We evaluate our approach in terms of accuracy, relocalization capability and run-time efficiency on public indoor benchmark datasets and on newly recorded outdoor sequences. We demonstrate state-of-the-art performance of our system compared to a visual-inertial odometry method and baseline visual SLAM approaches in recovering the trajectory of the camera.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset