Large-Scale Educational Question Analysis with Partial Variational Auto-encoders
Online education platforms enable teachers to share a large number of educational resources such as questions to form exercises and quizzes for students. With large volumes of such crowd-sourced questions, quantifying the properties of these questions in crowd-sourced online education platforms is of great importance to enable both teachers and students to find high-quality and suitable resources. In this work, we propose a framework for large-scale question analysis. We utilize the state-of-the-art Bayesian deep learning method, in particular partial variational auto-encoders, to analyze real-world educational data. We also develop novel objectives to quantify question quality and difficulty. We apply our proposed framework to a real-world cohort with millions of question-answer pairs from an online education platform. Our framework not only demonstrates promising results in terms of statistical metrics but also obtains highly consistent results with domain expert evaluation.
READ FULL TEXT