Large-Scale Optimal Transport and Mapping Estimation

11/07/2017
by   Vivien Seguy, et al.
0

This paper presents a novel two-step approach for the fundamental problem of learning an optimal map from one distribution to another. First, we learn an optimal transport (OT) plan, which can be thought as a one-to-many map between the two distributions. To that end, we propose a stochastic dual approach of regularized OT, and show empirically that it scales better than a recent related approach when the amount of samples is very large. Second, we estimate a Monge map as a deep neural network learned by approximating the barycentric projection of the previously-obtained OT plan. We prove two theoretical stability results of regularized OT which show that our estimations converge to the OT plan and Monge map between the underlying continuous measures. We showcase our proposed approach on two applications: domain adaptation and generative modeling.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset