Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs

11/27/2017
by   Loic Landrieu, et al.
0

We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of large-scale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich representation of contextual relationships between object parts, which is then exploited by a graph convolutional network. Our framework sets a new state of the art for segmenting outdoor LiDAR scans (+11.9 and +8.8 mIoU points for both Semantic3D test sets), as well as indoor scans (+5.8 mIoU points for the S3DIS dataset).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset