LDPC Codes Achieve List Decoding Capacity

09/13/2019
by   Jonathan Mosheiff, et al.
0

We show that Gallager's ensemble of Low-Density Parity Check (LDPC) codes achieve list-decoding capacity. These are the first graph-based codes shown to have this property. Previously, the only codes known to achieve list-decoding capacity were completely random codes, random linear codes, and codes constructed by algebraic (rather than combinatorial) techniques. This result opens up a potential avenue towards truly linear-time list-decodable codes which achieve list-decoding capacity. Our result on list decoding follows from a much more general result: any local property satisfied with high probability by a random linear code is also satisfied with high probability by a random LDPC code from Gallager's distribution. Local properties are properties characterized by the exclusion of small sets of codewords, and include list-decoding, list-recovery and average-radius list-decoding. Along the way, we give a characterization of sets of codewords that are likely to appear in a random linear code, which may be of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset