Learn to Compress CSI and Allocate Resources in Vehicular Networks

08/12/2019
by   Liang Wang, et al.
0

Resource allocation has a direct and profound impact on the performance of vehicle-to-everything (V2X) networks. In this paper, we develop a hybrid architecture consisting of centralized decision making and distributed resource sharing (the C-Decision scheme) to maximize the long-term sum rate of all vehicles. To reduce the network signaling overhead, each vehicle uses a deep neural network to compress its observed information that is thereafter fed back to the centralized decision making unit. The centralized decision unit employs a deep Q-network to allocate resources and then sends the decision results to all vehicles. We further adopt a quantization layer for each vehicle that learns to quantize the continuous feedback. In addition, we devise a mechanism to balance the transmission of vehicle-to-vehicle (V2V) links and vehicle-to-infrastructure (V2I) links. To further facilitate distributed spectrum sharing, we also propose a distributed decision making and spectrum sharing architecture (the D-Decision scheme) for each V2V link. Through extensive simulation results, we demonstrate that the proposed C-Decision and D-Decision schemes can both achieve near-optimal performance and are robust to feedback interval variations, input noise, and feedback noise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset