Learned Query Superoptimization

03/27/2023
by   Ryan Marcus, et al.
0

Traditional query optimizers are designed to be fast and stateless: each query is quickly optimized using approximate statistics, sent off to the execution engine, and promptly forgotten. Recent work on learned query optimization have shown that it is possible for a query optimizer to "learn from its mistakes," correcting erroneous query plans the next time a plan is produced. But what if query optimizers could avoid mistakes entirely? This paper presents the idea of learned query superoptimization. A new generation of query superoptimizers could autonomously experiment to discover optimal plans using exploration-driven algorithms, iterative Bayesian optimization, and program synthesis. While such superoptimizers will take significantly longer to optimize a given query, superoptimizers have the potential to massively accelerate a large number of important repetitive queries being executed on data systems today.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro