Learning a Degradation-Adaptive Network for Light Field Image Super-Resolution

06/13/2022
by   Yingqian Wang, et al.
3

Recent years have witnessed the great advances of deep neural networks (DNNs) in light field (LF) image super-resolution (SR). However, existing DNN-based LF image SR methods are developed on a single fixed degradation (e.g., bicubic downsampling), and thus cannot be applied to super-resolve real LF images with diverse degradations. In this paper, we propose the first method to handle LF image SR with multiple degradations. In our method, a practical LF degradation model that considers blur and noise is developed to approximate the degradation process of real LF images. Then, a degradation-adaptive network (LF-DAnet) is designed to incorporate the degradation prior into the SR process. By training on LF images with multiple synthetic degradations, our method can learn to adapt to different degradations while incorporating the spatial and angular information. Extensive experiments on both synthetically degraded and real-world LFs demonstrate the effectiveness of our method. Compared with existing state-of-the-art single and LF image SR methods, our method achieves superior SR performance under a wide range of degradations, and generalizes better to real LF images. Codes and models are available at https://github.com/YingqianWang/LF-DAnet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset