Learning a Mesh Motion Technique with Application to Fluid-Structure Interaction and Shape Optimization

06/05/2022
by   Johannes Haubner, et al.
0

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we propose a splitting of the monolithic FSI system into three smaller subsystems, in order to segregate the mesh motion. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset