Learning Antidote Data to Individual Unfairness

11/29/2022
by   Peizhao Li, et al.
0

Fairness is an essential factor for machine learning systems deployed in high-stake applications. Among all fairness notions, individual fairness, following a consensus that `similar individuals should be treated similarly,' is a vital notion to guarantee fair treatment for individual cases. Previous methods typically characterize individual fairness as a prediction-invariant problem when perturbing sensitive attributes, and solve it by adopting the Distributionally Robust Optimization (DRO) paradigm. However, adversarial perturbations along a direction covering sensitive information do not consider the inherent feature correlations or innate data constraints, and thus mislead the model to optimize at off-manifold and unrealistic samples. In light of this, we propose a method to learn and generate antidote data that approximately follows the data distribution to remedy individual unfairness. These on-manifold antidote data can be used through a generic optimization procedure with original training data, resulting in a pure pre-processing approach to individual unfairness, or can also fit well with the in-processing DRO paradigm. Through extensive experiments, we demonstrate our antidote data resists individual unfairness at a minimal or zero cost to the model's predictive utility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset