Learning Control by Iterative Inversion

11/03/2022
by   Gal Leibovich, et al.
0

We formulate learning for control as an inverse problem – inverting a dynamical system to give the actions which yield desired behavior. The key challenge in this formulation is a distribution shift – the learning agent only observes the forward mapping (its actions' consequences) on trajectories that it can execute, yet must learn the inverse mapping for inputs-outputs that correspond to a different, desired behavior. We propose a general recipe for inverse problems with a distribution shift that we term iterative inversion – learn the inverse mapping under the current input distribution (policy), then use it on the desired output samples to obtain new inputs, and repeat. As we show, iterative inversion can converge to the desired inverse mapping, but under rather strict conditions on the mapping itself. We next apply iterative inversion to learn control. Our input is a set of demonstrations of desired behavior, given as video embeddings of trajectories, and our method iteratively learns to imitate trajectories generated by the current policy, perturbed by random exploration noise. We find that constantly adding the demonstrated trajectory embeddings as input to the policy when generating trajectories to imitate, a-la iterative inversion, steers the learning towards the desired trajectory distribution. To the best of our knowledge, this is the first exploration of learning control from the viewpoint of inverse problems, and our main advantage is simplicity – we do not require rewards, and only employ supervised learning, which easily scales to state-of-the-art trajectory embedding techniques and policy representations. With a VQ-VAE embedding, and a transformer-based policy, we demonstrate non-trivial continuous control on several tasks. We also report improved performance on imitating diverse behaviors compared to reward based methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset