Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic
We study a synthetic corpus-based approach for language models (LMs) to acquire logical deductive reasoning ability. The previous studies generated deduction examples using specific sets of deduction rules. However, these rules were limited or otherwise arbitrary. This can limit the generalizability of acquired deductive reasoning ability. We rethink this and adopt a well-grounded set of deduction rules based on formal logic theory, which can derive any other deduction rules when combined in a multistep way. We empirically verify that LMs trained on the proposed corpora, which we name FLD (Formal Logic Deduction), acquire more generalizable deductive reasoning ability. Furthermore, we identify the aspects of deductive reasoning ability on which deduction corpora can enhance LMs and those on which they cannot. Finally, on the basis of these results, we discuss the future directions for applying deduction corpora or other approaches for each aspect. We release the code, data, and models.
READ FULL TEXT