Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
We study a family of regularized score-based estimators for learning the structure of a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with p≫ n. Our main results establish support recovery guarantees and deviation bounds for a family of penalized least-squares estimators under concave regularization without assuming prior knowledge of a variable ordering. These results apply to a variety of practical situations that allow for arbitrary nondegenerate covariance structures as well as many popular regularizers including the MCP, SCAD, ℓ_0 and ℓ_1. The proof relies on interpreting a DAG as a recursive linear structural equation model, which reduces the estimation problem to a series of neighbourhood regressions. We provide a novel statistical analysis of these neighbourhood problems, establishing uniform control over the superexponential family of neighbourhoods associated with a Gaussian distribution. We then apply these results to study the statistical properties of score-based DAG estimators, learning causal DAGs, and inferring conditional independence relations via graphical models. Our results yield---for the first time---finite-sample guarantees for structure learning of Gaussian DAGs in high-dimensions via score-based estimation.
READ FULL TEXT