Learning Dynamic Correlations in Spatiotemporal Graphs for Motion Prediction

04/04/2022
by   Jiajun Fu, et al.
0

Human motion prediction is a challenge task due to the dynamic spatiotemporal graph correlations in different motion sequences. How to efficiently represent spatiotemporal graph correlations and model dynamic correlation variances between different motion sequences is a challenge for spatiotemporal graph representation in motion prediction. In this work, we present Dynamic SpatioTemporal Graph Convolution (DSTD-GC). The proposed DSTD-GC decomposes dynamic spatiotemporal graph modeling into a combination of Dynamic Spatial Graph Convolution (DS-GC) and Dynamic Temporal Graph Convolution (DT-GC). As human motions are subject to common constraints like body connections and present dynamic motion patterns from different samples, we present Constrained Dynamic Correlation Modeling strategy to represent the spatial/temporal graph as a shared spatial/temporal correlation and a function to extract temporal-specific /spatial-specific adjustments for each sample. The modeling strategy represents the spatiotemporal graph with 28.6% parameters of the state-of-the-art static decomposition representation while also explicitly models sample-specific spatiotemporal correlation variances. Moreover, we also mathematically reformulating spatiotemporal graph convolutions and their decomposed variants into a unified form and find that DSTD-GC relaxes strict constraints of other graph convolutions, leading to a stronger representation capability. Combining DSTD-GC with prior knowledge, we propose a powerful spatiotemporal graph convolution network called DSTD-GCN which outperforms state-of-the-art methods on the Human3.6M and CMU Mocap datasets in prediction accuracy with fewest parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset