Learning for Active 3D Mapping
We propose an active 3D mapping method for depth sensors, which allow individual control of depth-measuring rays, such as the newly emerging solid-state lidars. The method simultaneously (i) learns to reconstruct a dense 3D occupancy map from sparse depth measurements, and (ii) optimizes the reactive control of depth-measuring rays. To make the first step towards the online control optimization, we propose a fast prioritized greedy algorithm, which needs to update its cost function in only a small fraction of pos- sible rays. The approximation ratio of the greedy algorithm is derived. An experimental evaluation on the subset of the KITTI dataset demonstrates significant improve- ment in the 3D map accuracy when learning-to-reconstruct from sparse measurements is coupled with the optimization of depth-measuring rays.
READ FULL TEXT