Learning on Bandwidth Constrained Multi-Source Data with MIMO-inspired DPP MAP Inference

06/04/2023
by   Xiwen Chen, et al.
0

This paper proposes a distributed version of Determinant Point Processing (DPP) inference to enhance multi-source data diversification under limited communication bandwidth. DPP is a popular probabilistic approach that improves data diversity by enforcing the repulsion of elements in the selected subsets. The well-studied Maximum A Posteriori (MAP) inference in DPP aims to identify the subset with the highest diversity quantified by DPP. However, this approach is limited by the presumption that all data samples are available at one point, which hinders its applicability to real-world applications such as traffic datasets where data samples are distributed across sources and communication between them is band-limited. Inspired by the techniques used in Multiple-Input Multiple-Output (MIMO) communication systems, we propose a strategy for performing MAP inference among distributed sources. Specifically, we show that a lower bound of the diversity-maximized distributed sample selection problem can be treated as a power allocation problem in MIMO systems. A determinant-preserved sparse representation of selected samples is used to perform sample precoding in local sources to be processed by DPP. Our method does not require raw data exchange among sources, but rather a band-limited feedback channel to send lightweight diversity measures, analogous to the CSI message in MIMO systems, from the center to data sources. The experiments show that our scalable approach can outperform baseline methods, including random selection, uninformed individual DPP with no feedback, and DPP with SVD-based feedback, in both i.i.d and non-i.i.d setups. Specifically, it achieves 1 to 6 log-difference diversity gain in the latent representation of CIFAR-10, CIFAR-100, StanfordCars, and GTSRB datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset