Learning Representations from Audio-Visual Spatial Alignment

11/03/2020
by   Pedro Morgado, et al.
0

We introduce a novel self-supervised pretext task for learning representations from audio-visual content. Prior work on audio-visual representation learning leverages correspondences at the video level. Approaches based on audio-visual correspondence (AVC) predict whether audio and video clips originate from the same or different video instances. Audio-visual temporal synchronization (AVTS) further discriminates negative pairs originated from the same video instance but at different moments in time. While these approaches learn high-quality representations for downstream tasks such as action recognition, their training objectives disregard spatial cues naturally occurring in audio and visual signals. To learn from these spatial cues, we tasked a network to perform contrastive audio-visual spatial alignment of 360 video and spatial audio. The ability to perform spatial alignment is enhanced by reasoning over the full spatial content of the 360 video using a transformer architecture to combine representations from multiple viewpoints. The advantages of the proposed pretext task are demonstrated on a variety of audio and visual downstream tasks, including audio-visual correspondence, spatial alignment, action recognition, and video semantic segmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro