Learning Temporal Dependence from Time-Series Data with Latent Variables

08/27/2016
by   Hossein Hosseini, et al.
0

We consider the setting where a collection of time series, modeled as random processes, evolve in a causal manner, and one is interested in learning the graph governing the relationships of these processes. A special case of wide interest and applicability is the setting where the noise is Gaussian and relationships are Markov and linear. We study this setting with two additional features: firstly, each random process has a hidden (latent) state, which we use to model the internal memory possessed by the variables (similar to hidden Markov models). Secondly, each variable can depend on its latent memory state through a random lag (rather than a fixed lag), thus modeling memory recall with differing lags at distinct times. Under this setting, we develop an estimator and prove that under a genericity assumption, the parameters of the model can be learned consistently. We also propose a practical adaption of this estimator, which demonstrates significant performance gains in both synthetic and real-world datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset