Learning to Acquire Information

04/20/2017
by   Yewen Pu, et al.
0

We consider the problem of diagnosis where a set of simple observations are used to infer a potentially complex hidden hypothesis. Finding the optimal subset of observations is intractable in general, thus we focus on the problem of active diagnosis, where the agent selects the next most-informative observation based on the results of previous observations. We show that under the assumption of uniform observation entropy, one can build an implication model which directly predicts the outcome of the potential next observation conditioned on the results of past observations, and selects the observation with the maximum entropy. This approach enjoys reduced computation complexity by bypassing the complicated hypothesis space, and can be trained on observation data alone, learning how to query without knowledge of the hidden hypothesis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset