Learning to Actively Reduce Memory Requirements for Robot Control Tasks
Robots equipped with rich sensing modalities (e.g., RGB-D cameras) performing long-horizon tasks motivate the need for policies that are highly memory-efficient. State-of-the-art approaches for controlling robots often use memory representations that are excessively rich for the task or rely on hand-crafted tricks for memory efficiency. Instead, this work provides a general approach for jointly synthesizing memory representations and policies; the resulting policies actively seek to reduce memory requirements (i.e., take actions that reduce memory usage). Specifically, we present a reinforcement learning framework that leverages an implementation of the group LASSO regularization to synthesize policies that employ low-dimensional and task-centric memory representations. We demonstrate the efficacy of our approach with simulated examples including navigation in discrete and continuous spaces as well as vision-based indoor navigation set in a photo-realistic simulator. The results on these examples indicate that our method is capable of finding policies that rely only on low-dimensional memory representations and actively reduce memory requirements.
READ FULL TEXT