Learning to Compute Approximate Nash Equilibrium for Normal-form Games

08/17/2021
by   Zhijian Duan, et al.
36

In this paper, we propose a general meta learning approach to computing approximate Nash equilibrium for finite n-player normal-form games. Unlike existing solutions that approximate or learn a Nash equilibrium from scratch for each of the games, our meta solver directly constructs a mapping from a game utility matrix to a joint strategy profile. The mapping is parameterized and learned in a self-supervised fashion by a proposed Nash equilibrium approximation metric without ground truth data informing any Nash equilibrium. As such, it can immediately predict the joint strategy profile that approximates a Nash equilibrium for any unseen new game under the same game distribution. Moreover, the meta-solver can be further fine-tuned and adaptive to a new game if iteration updates are allowed. We theoretically prove that our meta-solver is not affected by the non-smoothness of exact Nash equilibrium solutions, and derive a sample complexity bound to demonstrate its generalization ability across normal-form games. Experimental results demonstrate its substantial approximation power against other strong baselines in both adaptive and non-adaptive cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset