Learning to Reason: Leveraging Neural Networks for Approximate DNF Counting
Weighted model counting has emerged as a prevalent approach for probabilistic inference. In this paper, we are interested in weighted DNF counting, or briefly, weighted #DNF, which admits a fully polynomial randomized approximation scheme, as shown by Karp and Luby. To this date, the best algorithm for approximating #DNF is due to Karp, Luby and Madras. The drawback of this algorithm is that it runs in quadratic time and hence is not suitable for fast online reasoning. To overcome this, we propose a novel approach that combines approximate model counting with deep learning. We conduct detailed experiments to validate our approach, and show that our model learns and generalizes from #DNF instances with a very high accuracy.
READ FULL TEXT