Legged Robot State Estimation in Slippery Environments Using Invariant Extended Kalman Filter with Velocity Update

04/09/2021
by   Sangli Teng, et al.
0

This paper proposes a state estimator for legged robots operating in slippery environments. An Invariant Extended Kalman Filter (InEKF) is implemented to fuse inertial and velocity measurements from a tracking camera and leg kinematic constraints. blackThe misalignment between the camera and the robot-frame is also modeled thus enabling auto-calibration of camera pose. The leg kinematics based velocity measurement is formulated as a right-invariant observation. Nonlinear observability analysis shows that other than the rotation around the gravity vector and the absolute position, all states are observable except for some singular cases. Discrete observability analysis demonstrates that our filter is consistent with the underlying nonlinear system. An online noise parameter tuning method is developed to adapt to the highly time-varying camera measurement noise. The proposed method is experimentally validated on a Cassie bipedal robot walking over slippery terrain. A video for the experiment can be found at https://youtu.be/VIqJL0cUr7s.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset