Let Me Not Lie: Learning MultiNomial Logit

12/23/2018
by   Brian Sifringer, et al.
12

Discrete choice models generally assume that model specification is known a priori. In practice, determining the utility specification for a particular application remains a difficult task and model misspecification may lead to biased parameter estimates. In this paper, we propose a new mathematical framework for estimating choice models in which the systematic part of the utility specification is divided into an interpretable part and a learning representation part that aims at automatically discovering a good utility specification from available data. We show the effectiveness of our framework by augmenting the utility specification of the Multinomial Logit Model (MNL) with a new non-linear representation arising from a Neural Network (NN). This leads to a new choice model referred to as the Learning Multinomial Logit (L-MNL) model. Our experiments show that our L-MNL model outperformed the traditional MNL models and existing hybrid neural network models both in terms of predictive performance and accuracy in parameter estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset