Leveraging Expert Models for Training Deep Neural Networks in Scarce Data Domains: Application to Offline Handwritten Signature Verification
This paper introduces a novel approach to leverage the knowledge of existing expert models for training new Convolutional Neural Networks, on domains where task-specific data are limited or unavailable. The presented scheme is applied in offline handwritten signature verification (OffSV) which, akin to other biometric applications, suffers from inherent data limitations due to regulatory restrictions. The proposed Student-Teacher (S-T) configuration utilizes feature-based knowledge distillation (FKD), combining graph-based similarity for local activations with global similarity measures to supervise student's training, using only handwritten text data. Remarkably, the models trained using this technique exhibit comparable, if not superior, performance to the teacher model across three popular signature datasets. More importantly, these results are attained without employing any signatures during the feature extraction training process. This study demonstrates the efficacy of leveraging existing expert models to overcome data scarcity challenges in OffSV and potentially other related domains.
READ FULL TEXT