Leveraging Skill-to-Skill Supervision for Knowledge Tracing

06/12/2023
by   Hyeondey Kim, et al.
0

Knowledge tracing plays a pivotal role in intelligent tutoring systems. This task aims to predict the probability of students answering correctly to specific questions. To do so, knowledge tracing systems should trace the knowledge state of the students by utilizing their problem-solving history and knowledge about the problems. Recent advances in knowledge tracing models have enabled better exploitation of problem solving history. However, knowledge about problems has not been studied, as well compared to students' answering histories. Knowledge tracing algorithms that incorporate knowledge directly are important to settings with limited data or cold starts. Therefore, we consider the problem of utilizing skill-to-skill relation to knowledge tracing. In this work, we introduce expert labeled skill-to-skill relationships. Moreover, we also provide novel methods to construct a knowledge-tracing model to leverage human experts' insight regarding relationships between skills. The results of an extensive experimental analysis show that our method outperformed a baseline Transformer model. Furthermore, we found that the extent of our model's superiority was greater in situations with limited data, which allows a smooth cold start of our model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset