Limitations of routing-by-agreement based capsule networks

05/21/2019
by   David Peer, et al.
0

Classical neural networks add a bias term to the sum of all weighted inputs. For capsule networks, the routing-by-agreement algorithm, which is commonly used to route vectors from lower level capsules to upper level capsules, calculates activations without a bias term. In this paper we show that such a term is also necessary for routing-by-agreement. We will proof that for every input there exists a symmetric input that cannot be distinguished correctly by capsules without a bias term. We show that this limitation impacts the training of deeper capsule networks negatively and that adding a bias term allows for the training of deeper capsule networks. An alternative to a bias is also presented in this paper. This novel method does not introduce additional parameters and is directly encoded in the activation vector of capsules.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset